Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 23(61): 15283-15288, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-28868759

RESUMO

Synergy between graphitic nanocarbon, obtainable from food waste through cracking of biomethane, and iron oxide nanoparticles provides access to efficient bifunctional electro catalysts. Dissolution of potassium-intercalated graphitic nanocarbons yields graphenide solutions with calibrated, small lateral size-reduced graphenes that are used subsequently as reducing agents of iron metal salts. This results in the strong binding of small size (2-5 nm) nanoparticles on the carbon framework homogeneously within the composite material, accessibility of the catalytic centers, and good conductivity provided by the underlying carbon framework. The iron oxide nanocarbon electrocatalyst performances are highlighted by the overall overpotential of approximately 1 V needed to reach the benchmark threshold of 10 mA cm-2 for the oxygen reduction reaction and the particular activity towards oxygen evolution reaction (η≈0.4 V at 10 mA cm-2 ), comparable to that of the precious RuO2 and IrO2 catalysts. This iron oxide/nanocarbon electrocatalyst is versatile, remarkably active, stable, and truly sustainable.

2.
Angew Chem Int Ed Engl ; 56(24): 6946-6951, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28318084

RESUMO

Twisted two-dimensional aromatic frameworks have been prepared by overcrowding the nodes with bulky and rigid substituents. The highly distorted aromatic framework with alternating out-of-plane substituents results in diminished interlayer interactions that favor the exfoliation and dispersion of individual layers in organic media.

3.
Nat Commun ; 7: 13549, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27941752

RESUMO

Considering the depletion of fossil-fuel reserves and their negative environmental impact, new energy schemes must point towards alternative ecological processes. Efficient hydrogen evolution from water is one promising route towards a renewable energy economy and sustainable development. Here we show a tridimensional electrocatalytic interface, featuring a hierarchical, co-axial arrangement of a palladium/titanium dioxide layer on functionalized multi-walled carbon nanotubes. The resulting morphology leads to a merging of the conductive nanocarbon core with the active inorganic phase. A mechanistic synergy is envisioned by a cascade of catalytic events promoting water dissociation, hydride formation and hydrogen evolution. The nanohybrid exhibits a performance exceeding that of state-of-the-art electrocatalysts (turnover frequency of 15000 H2 per hour at 50 mV overpotential). The Tafel slope of ∼130 mV per decade points to a rate-determining step comprised of water dissociation and formation of hydride. Comparative activities of the isolated components or their physical mixtures demonstrate that the good performance evolves from the synergistic hierarchical structure.

4.
ChemistryOpen ; 4(3): 268-73, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26246987

RESUMO

Graphene-metal composites have potential as novel catalysts due to their unique electrical properties. Here, we report the synthesis of a composite material comprised of monodispersed platinum nanoparticles on high-quality graphene obtained by using two different exfoliation techniques. The material, prepared via an easy, low-cost and reproducible procedure, was evaluated as an electrocatalyst for the hydrogen evolution reaction. The turnover frequency at zero overpotential (TOF0 in 0.1 m phosphate buffer, pH 6.8) was determined to be approximately 4600 h(-1). This remarkably high value is likely due to the optimal dispersion of the platinum nanoparticles on the graphene substrate, which enables the material to be loaded with only very small amounts of the noble metal (i.e., Pt) despite the very highly active surface. This study provides a new outlook on the design of novel materials for the development of robust and scalable water-splitting devices.

5.
Biomaterials ; 34(27): 6339-54, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23727259

RESUMO

Cardiac stem cell therapy has been proposed as a therapy option to treat the diseased myocardium. However, the low retention rate of transplanted single-cell suspensions remains a major issue of current therapy strategies. Therefore, the concept of scaffold-free cellular self-assembly into three-dimensional microtissues (3D-MTs) prior to transplantation may be beneficial to enhance retention and survival. We compared clinically relevant, human stem cell sources for their ability to generate 3D-MTs with particular regards to formation characteristics, proliferation-activity, viability and extracellular-matrix production. Single-cell suspensions of human bone marrow- and adipose tissue-derived mesenchymal stem cells (hBMMSCs and hATMSCs), Isl1(+) cardiac progenitors derived from human embryonic stem cells (hESC-Isl1(+) cells), and undifferentiated human induced pluripotent cells (hiPSCs) were characterized before to generate 3D-MTs using a hanging-drop culture. Besides the principal feasibility of cell-specific 3D-MT formation, a detailed head-to-head comparison between cell sources was performed using histology, immunocyto- and histo-chemistry as well as flow cytometry. Round-oval shaped and uniform 3D-MTs could be successfully generated from all cell types starting with a loose formation within the first 24 h that fully stabilized after 3 days and resulting in a mean 3D-MT diameter of 194.56 ± 18.01 µm (hBMMSCs), 194.56 ± 16.30 µm (hATMSCs), 159.73 ± 19.20 µm (hESC-Isl1(+) cells) and 120.95 ± 7.97 µm (hiPSCs). While all 3D-MTs showed a homogenous cell distribution, hiPSC-derived 3D-MTs displayed a compact cell formation primarily located at the outer margin. hESC-Isl1(+) and hiPSC-derived 3D-MTs maintained their proliferation-activity which was rather limited in the MSC-based 3D-MTs. All four 3D-MT types revealed a comparable viability in excess of 70% and showed a cell-specific expression profile being comparable to their single-cell counterparts. Extracellular matrix (ECM) production during 3D-MT formation was observed for all cell-specific 3D-MTs, with hiPSC-derived 3D-MTs being the fastest one. Interestingly, ECM distribution was homogenous for hATMSC- and hiPSC-based 3D-MTs, while it appeared to be primarily concentrated within in the center of hESC-Isl1(+) and hBMMSC-based 3D-MTs. The results of this head-to-head comparative study indicated that 3D-MTs can be successfully generated from hESC-derived Isl1(+) cells, hiPSCs and MSC lines upon hanging drop culture. Cell-specific 3D-MTs displayed sufficient viability and instant ECM formation. The concept of 3D-MT in vitro generation prior to cell transplantation may represent a promising delivery format for future strategies to enhance cellular engraftment and survival.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Mesenquimais/citologia , Miocárdio/citologia , Engenharia Tecidual/métodos , Diferenciação Celular , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas , Humanos
6.
PLoS One ; 6(2): e14733, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21364915

RESUMO

BACKGROUND: Differentiation of pluripotent stem cells in vitro provides a powerful means to investigate early developmental fates, including hematopoiesis. In particular, the use of a fully defined medium (FDM) would avoid biases induced by unidentified factors contained in serum, and would also allow key molecular mediators involved in such a process to be identified. Our goal was to induce in vitro, the differentiation of human embryonic stem cells (ESC) and induced pluripotent stem cells (iPSC) into morphologically and phenotypically mature leukocytes and erythrocytes, in the complete absence of serum and feeder cells. METHODOLOGY/PRINCIPAL FINDINGS: ESC and iPSC were sequentially induced in liquid cultures for 4 days with bone morphogenic protein-4, and for 4 days with FLT3-ligand, stem cell factor, thrombopoietin and vascular endothelium growth factor. Cell differentiation status was investigated by both mRNA expression and FACS expression profiles. Cells were further sorted and assayed for their hematopoietic properties in colony-forming unit (CFU) assays. In liquid cultures, cells progressively down-modulated Oct-4 expression while a sizeable cell fraction expressed CD34 de novo. SCL/Tal1 and Runx1 transcripts were exclusively detected in CD34(+) cells. In clonal assays, both ESC and iPSC-derived cells generated CFU, albeit with a 150-fold lower efficacy than cord blood (CB) CD34(+) cells. ESC-derived CD34(+) cells generated myeloid and fully hemoglobinized erythroid cells whereas CD34(-) cells almost exclusively generated small erythroid colonies. Both ESC and iPSC-derived erythroid cells expressed embryonic and fetal globins but were unable to synthesize adult ß-globin in contrast with CB cells, suggesting that they had differentiated from primitive rather than from definitive hematopoietic progenitors. CONCLUSIONS/SIGNIFICANCE: Short-term, animal protein-free culture conditions are sufficient to sustain the differentiation of human ESC and iPSC into primitive hematopoietic progenitors, which, in turn, produce more mature blood cell types. However, additional factors have yet to be identified to allow their differentiation into definitive erythroid cultures.


Assuntos
Antígenos CD34/metabolismo , Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Células-Tronco Pluripotentes/fisiologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular/efeitos dos fármacos , Linhagem da Célula/fisiologia , Tamanho Celular , Células Cultivadas , Meios de Cultura/química , Meios de Cultura/farmacologia , Meios de Cultura Livres de Soro/farmacologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/fisiologia , Células Mieloides/citologia , Células Mieloides/metabolismo , Células Mieloides/fisiologia , Células-Tronco Pluripotentes/efeitos dos fármacos
7.
Proc Natl Acad Sci U S A ; 105(40): 15529-34, 2008 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-18832173

RESUMO

The Notch receptor mediates cell fate decision in multiple organs. In the current work we tested the hypothesis that Nkx2.5 is a target gene of Notch1 and raised the possibility that Notch1 regulates myocyte commitment in the adult heart. Cardiac progenitor cells (CPCs) in the niches express Notch1 receptor, and the supporting cells exhibit the Notch ligand Jagged1. The nuclear translocation of Notch1 intracellular domain (N1ICD) up-regulates Nkx2.5 in CPCs and promotes the formation of cycling myocytes in vitro. N1ICD and RBP-Jk form a protein complex, which in turn binds to the Nkx2.5 promoter initiating transcription and myocyte differentiation. In contrast, transcription factors of vascular cells are down-regulated by Jagged1 activation of the Notch1 pathway. Importantly, inhibition of Notch1 in infarcted mice impairs the commitment of resident CPCs to the myocyte lineage opposing cardiomyogenesis. These observations indicate that Notch1 favors the early specification of CPCs to the myocyte phenotype but maintains the newly formed cells in a highly proliferative state. Dividing Nkx2.5-positive myocytes correspond to transit amplifying cells, which condition the replicative capacity of the heart. In conclusion, Notch1 may have critical implications in the control of heart homeostasis and its adaptation to pathologic states.


Assuntos
Miócitos Cardíacos/citologia , Receptor Notch1/metabolismo , Células-Tronco/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA4/metabolismo , Coração , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Regiões Promotoras Genéticas , Células-Tronco/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
8.
Circ Res ; 103(1): 107-16, 2008 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-18556576

RESUMO

Ischemic heart disease is characterized chronically by a healed infarct, foci of myocardial scarring, cavitary dilation, and impaired ventricular performance. These alterations can only be reversed by replacement of scarred tissue with functionally competent myocardium. We tested whether cardiac progenitor cells (CPCs) implanted in proximity of healed infarcts or resident CPCs stimulated locally by hepatocyte growth factor and insulin-like growth factor-1 invade the scarred myocardium and generate myocytes and coronary vessels improving the hemodynamics of the infarcted heart. Hepatocyte growth factor is a powerful chemoattractant of CPCs, and insulin-like growth factor-1 promotes their proliferation and survival. Injection of CPCs or growth factors led to the replacement of approximately 42% of the scar with newly formed myocardium, attenuated ventricular dilation and prevented the chronic decline in function of the infarcted heart. Cardiac repair was mediated by the ability of CPCs to synthesize matrix metalloproteinases that degraded collagen proteins, forming tunnels within the fibrotic tissue during their migration across the scarred myocardium. New myocytes had a 2n karyotype and possessed 2 sex chromosomes, excluding cell fusion. Clinically, CPCs represent an ideal candidate cell for cardiac repair in patients with chronic heart failure. CPCs may be isolated from myocardial biopsies and, following their expansion in vitro, administered back to the same patients avoiding the adverse effects associated with the use of nonautologous cells. Alternatively, growth factors may be delivered locally to stimulate resident CPCs and promote myocardial regeneration. These forms of treatments could be repeated over time to reduce progressively tissue scarring and expand the working myocardium.


Assuntos
Cicatriz/terapia , Insuficiência Cardíaca/terapia , Infarto do Miocárdio/terapia , Miocárdio , Transplante de Células-Tronco , Células-Tronco , Animais , Movimento Celular/efeitos dos fármacos , Doença Crônica , Cicatriz/etiologia , Cicatriz/metabolismo , Cicatriz/patologia , Colágeno/metabolismo , Colagenases/biossíntese , Diploide , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Hemodinâmica , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Regeneração/efeitos dos fármacos , Transplante de Células-Tronco/métodos , Células-Tronco/metabolismo , Células-Tronco/patologia , Transplante Homólogo , Disfunção Ventricular/etiologia , Disfunção Ventricular/metabolismo , Disfunção Ventricular/patologia , Disfunção Ventricular/terapia
9.
Circ Res ; 99(1): 42-52, 2006 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-16763167

RESUMO

Diabetes leads to a decompensated myopathy, but the etiology of the cardiac disease is poorly understood. Oxidative stress is enhanced with diabetes and oxygen toxicity may alter cardiac progenitor cell (CPC) function resulting in defects in CPC growth and myocyte formation, which may favor premature myocardial aging and heart failure. We report that in a model of insulin-dependent diabetes mellitus, the generation of reactive oxygen species (ROS) leads to telomeric shortening, expression of the senescent associated proteins p53 and p16INK4a, and apoptosis of CPCs, impairing the growth reserve of the heart. However, ablation of the p66shc gene prevents these negative adaptations of the CPC compartment, interfering with the acquisition of the heart senescent phenotype and the development of heart failure with diabetes. ROS elicit 3 cellular reactions: low levels activate cell growth, intermediate quantities trigger cell apoptosis, and high amounts initiate cell necrosis. CPC replication predominates in diabetic p66shc-/-, whereas CPC apoptosis and myocyte apoptosis and necrosis prevail in diabetic wild type. Expansion of CPCs and developing myocytes preserves cardiac function in diabetic p66shc-/-, suggesting that intact CPCs can effectively counteract the impact of uncontrolled diabetes on the heart. The recognition that p66shc conditions the destiny of CPCs raises the possibility that diabetic cardiomyopathy is a stem cell disease in which abnormalities in CPCs define the life and death of the heart. Together, these data point to a genetic link between diabetes and ROS, on the one hand, and CPC survival and growth, on the other.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Baixo Débito Cardíaco/etiologia , Senescência Celular , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/fisiopatologia , Deleção de Genes , Miocárdio/patologia , Células-Tronco , Animais , Baixo Débito Cardíaco/prevenção & controle , Morte Celular , Divisão Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Coração/fisiopatologia , Camundongos , Camundongos Knockout , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Proteínas Adaptadoras da Sinalização Shc , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Células-Tronco/metabolismo , Células-Tronco/patologia
10.
Proc Natl Acad Sci U S A ; 103(24): 9226-31, 2006 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-16754876

RESUMO

Cardiac stem cells (CSCs) have been identified in the adult heart, but the microenvironment that protects the slow-cycling, undifferentiated, and self-renewing CSCs remains to be determined. We report that the myocardium possesses interstitial structures with the architectural organization of stem cell niches that harbor long-term BrdU-retaining cells. The recognition of long-term label-retaining cells provides functional evidence of resident CSCs in the myocardium, indicating that the heart is an organ regulated by a stem cell compartment. Cardiac niches contain CSCs and lineage-committed cells, which are connected to supporting cells represented by myocytes and fibroblasts. Connexins and cadherins form gap and adherens junctions at the interface of CSCs-lineage-committed cells and supporting cells. The undifferentiated state of CSCs is coupled with the expression of alpha(4)-integrin, which colocalizes with the alpha(2)-chain of laminin and fibronectin. CSCs divide symmetrically and asymmetrically, but asymmetric division predominates, and the replicating CSC gives rise to one daughter CSC and one daughter committed cell. By this mechanism of growth kinetics, the pool of primitive CSCs is preserved, and a myocyte progeny is generated together with endothelial and smooth muscle cells. Thus, CSCs regulate myocyte turnover that is heterogeneous across the heart, faster at the apex and atria, and slower at the base-midregion of the ventricle.


Assuntos
Coração/anatomia & histologia , Miocárdio/citologia , Miócitos Cardíacos/fisiologia , Células-Tronco/fisiologia , Animais , Biomarcadores/metabolismo , Linhagem da Célula , Fibronectinas/genética , Fibronectinas/metabolismo , Integrinas/metabolismo , Laminina/genética , Laminina/metabolismo , Camundongos , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Células-Tronco/citologia
11.
Circ Res ; 97(12): 1332-41, 2005 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-16293788

RESUMO

Cytoplasmic overexpression of Akt in the heart results in a myopathy characterized by organ and myocyte hypertrophy. Conversely, nuclear-targeted Akt does not lead to cardiac hypertrophy, but the cellular basis of this distinct heart phenotype remains to be determined. Similarly, whether nuclear-targeted Akt affects ventricular performance and mechanics, calcium metabolism, and electrical properties of myocytes is unknown. Moreover, whether the expression and state of phosphorylation of regulatory proteins implicated in calcium cycling and myocyte contractility are altered in nuclear-targeted Akt has not been established. We report that nuclear overexpression of Akt does not modify cardiac size and shape but results in an increased number of cardiomyocytes, which are smaller in volume. Additionally, the heart possesses enhanced systolic and diastolic function, which is paralleled by increased myocyte performance. Myocyte shortening and velocity of shortening and relengthening are increased in transgenic mice and are coupled with a more efficient reuptake of calcium by the sarcoplasmic reticulum (SR). This process increases calcium loading of the SR during relengthening. The enhanced SR function appears to be mediated by an increase in SR Ca2+-ATPase2a activity sustained by a higher degree of phosphorylation of phospholamban. This posttranslational modification was associated with an increase in phospho-protein kinase A and a decrease in protein phosphatase-1. Together, these observations provide a plausible biochemical mechanism for the potentiation of myocyte and ventricular function in Akt transgenic mice. Therefore, nuclear-targeted Akt in myocytes may have important implications for the diseased heart.


Assuntos
Núcleo Celular/metabolismo , Contração Miocárdica , Miócitos Cardíacos/fisiologia , Proteínas Proto-Oncogênicas c-akt/fisiologia , Função Ventricular , Citoesqueleto de Actina/metabolismo , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , ATPases Transportadoras de Cálcio/fisiologia , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Fosforilação , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Sarcômeros/fisiologia , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático , Trocador de Sódio e Cálcio/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...